
The Kronecker‐Weber Theorem and Current
Progress in its Formalization
Reviewing The Proof of The Kronecker‐Weber
Theorem and Discussing Current Works on
Formalizing it

Huanyu Zheng

Supervisor: Luciena Xiao

Xi'an Jiaotong University
School of Mathematics and Statistics
Department of Mathematics and Applied Mathematics

Xi'an, September 2024



ABSTRACT

In this paper, we will begin by recalling the background and historical position of the
Kronecker-Weber theorem. Then we present a suitable proof structure for formaliza-
tion after listing relevant definitions and basic results. Finally, a discussion on current
works in its formalization using Lean 4 is given.
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1
INTRODUCTION

Theorem 1.1 (Kronecker-Weber).

Every abelian extension of Q is contained in a cyclotomic field.

The Kronecker-Weber theorem stands as a landmark result in the field of algebraic
number theory, representing a foundational moment in the development of class field
theory. This theorem not only provides a deep understanding of the structure of num-
ber fields but also connects the seemingly abstract concept of abelian extensions to the
concrete and well-understood world of roots of unity.

David Hilbert provided the first rigorous proof of the theorem, which was built upon
the earlier insights of Kronecker and Weber. Hilbert’s approach involved the usage of
higher ramification groups, a tool that allows deeper analysis of how primes behave
in field extensions, particularly in understanding the distinction between tame and
wild ramification. This framework not only completed the proof of the Kronecker-
Weber theorem but also laid the groundwork for the future development of class field
theory, which would later be expanded by mathematicians such as Emil Artin and
Helmut Hasse.

In recent years, there has been increasing interest in the formalization of mathemati-
cal theorems using computer assisted theoremprover like Lean. TheKronecker-Weber
theorem, with its rich structure and historical importance, has become a subject of fo-
cus in this area. The formalization process involves encoding the proof of the theorem
into a computer-verifiable format, ensuring not only the correctness of the proof but
also making it accessible for future computational applications.

One of the main difficulty in formalization is to find relevant existing works, as they
always lack of natural language annotation and appear very different from our expec-
tation. Thus, throughout this paper, I will presents basic proof steps along side with
existing relevant lemmas in mathlib, the theorem library for Lean, if any. And I shall
also explain their connections. Finally I will build a basic algorithm or framework to
prove Kronecker-Weber in a formalization fashion.
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2
HIGHER RAMIFICATION GROUP

2.1 Basic Ramification Theory

In this section we define some basic concepts useful in analyzing how prime behaves
while moving along algebra extensions. Main result here are Theorem 2.2 and 2.4.

Definition 2.1 (Residue field).

• Residue field 𝑘(𝔭) at prime ideal 𝔭 in a general Dedekind domain 𝐴: 𝐴/𝔭

1 def LocalRing.ResidueField (R : Type u_1) [CommRing R] [LocalRing R] : Type u_1 :=
2 R / LocalRing.maximalIdeal R

Remark 2.1. In the first glimpse, the definition in Lean is very different from our definition.
But in fact Lean’s definition is more general.
It can be proved that for general ring 𝐴 and its prime ideal 𝔭,

𝐹𝑟𝑎𝑐(𝐴/𝔭) ≃ 𝐴𝔭/𝔭𝐴𝔭

where 𝐴𝔭 is a localization. In our case, take 𝐴 a Dedekind domain, so 𝔭 is a maximal ideal,
hence 𝐹𝑟𝑎𝑐(𝐴/𝔭) is just 𝐴/𝔭. Therefore,

𝑘(𝔭) ≃ LocalRing.ResidueField 𝐴𝔭

Remark 2.2. More on residue field

The residue field at a prime 𝔭 is essentially the field you get by ”modding out” by 𝔭. This
operation simplifies the arithmetic and focuses on the essential behavior of that prime.
Normally, we don’t care much about what happends within the ideal 𝔭, rather, we study
how 𝔭 behaves as a whole.

Now consider 𝐴 a Dedekind domain with field of fractions 𝐾, and 𝐵 the integral clo-
sure of 𝐴 in a finite separable extension 𝐿 of 𝐾. 𝔭 is a prime ideal of 𝐴, it generates an
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4 2. Higher Ramification Group

ideal 𝔭𝐵 in 𝐵. In particular, if only number field is concerned, 𝐴, 𝐵, 𝐾 are Z, 𝒪𝐿 , Q
respectively. We visualize our setup as below.

L

pB B

K

p A(Dedekind)

ideal finite degree, separable

generates

integral closure field of fractions

prime ideal

𝐵 is a Dedekind domain (see ANT.Theorem 3.29), then by the factorization of ideals
in Dedekind domain (see Ideal.uniqueFactorizationMonoid), 𝔭𝐵 factors into:

𝔭𝐵 = 𝔓𝑒1
1 . . .𝔓

𝑒𝑔
𝑔

where 𝔓𝑖 are prime ideals in 𝐵.

Definition 2.2 (Lies over).

• 𝔓 lies over 𝔭: 𝔓 appears in the factorization of 𝔭.

Remark 2.3. One may also say that 𝔓 divides 𝔭 here. In Lean, there is no explicit definition
of it, but one can still use map f p ≤ P (where f : R →+* S) to indicate the same thing.

Definition 2.3 (Ramified).

• 𝔭 is ramified in 𝐵 (or 𝐿): if any of the 𝑒𝑖 is ≥ 2.
• (Unramified: all 𝑒𝑖 are 1. Also, we say the field 𝐿 is ramified when there exists a ramified

prime ideal of 𝐴, otherwise it is unramified)

Definition 2.4 (Ramification index).

• Ramification index 𝑒(𝔓/𝔭): the power of𝔓 in the factorization of 𝔭. e.g., 𝑒(𝔓𝑖/𝔭) = 𝑒𝑖 .

1 noncomputable def Ideal.ramificationIdx {R : Type u} [CommRing R] {S : Type v}
[CommRing S] (f : R →+* S) (p : Ideal R) (P : Ideal S) : N :=↩→

2 sSup {n | map f p ≤ P ∧ n}

Remark 2.4. In Lean, ramification index is defined with respect to all ideals and all commuta-
tive rings, it is the largest exponent 𝑒 such that 𝔭 is contained in 𝔓𝑒 . In particular, if 𝔭 is not
contained in any 𝔓𝑒 , then the ramification index is 0. If there is no largest such 𝑒 (like when 𝔭

is trivial), then it is also defined to be 0.



2.1. Basic Ramification Theory 5

Remark 2.5. Understanding ramification more deeply:

When we ”move” a prime ideal of a domain into a larger domain, ramification helps us
to determine whether it behaves well. Four things can happend here:

1. it stays as a single prime ideal. (unramified)
2. it splits into distinct primes. (unramified)
3. it stays as a single prime but with a higher exponent. (totally ramified)
4. it splits into several primes, some of which have higher exponents. (ramified)

Obviously the prime behaves more complicated and ”badly” in the last two situations -
we name this ”ramified”. A ramified prime acts ”badly”, but how bad? Then it comes to
tamely/wildly ramification.

Theorem 2.1. If 𝐿 is Galois over 𝐾, then all the ramification indexes (of primes lying over
𝔭) are equal and all the residue class degrees are equal. Further, 𝑒 𝑓 𝑔 = [𝐿 : 𝐾]. (See ANT.
Theorem 3.34 for proof.)

Definition 2.5 (Tamely and wildly ramified).

• 𝔓/𝔭 is tamely ramified: ramification index 𝑒(𝔓/𝔭) is relatively prime to the character-
istic of residue field 𝑘(𝔓).

• (wildly ramified: otherwise.)

Theorem 2.2. If 𝐵 is a free 𝐴-module, then prime 𝔭 ramifies in 𝐿 iff 𝔭 | 𝑑𝑖𝑠𝑐(𝐵/𝐴). In
particular, only finitely many prime ideals ramify. (See ANT. Theorem 3.35 for proof.)

Theorem 2.3 (Hermite). Every nontrivial number field has discriminant greater than 2.
(This is a direct collary of ANT. Theorem 4.3.)

1 theorem NumberField.abs_discr_gt_two {K : Type u_1} [Field K] [NumberField K] (h : 1 <
FiniteDimensional.finrank Q K) : 2 < |NumberField.discr K|↩→

Theorem 2.4 (Minkowski). Every nontrivial number field is ramified.(there must be a
prime 𝑝 ∈ Z ramifies in the extension.)

Proof. This is a direct result of Theorem 2.2 and Theorem 2.3. □
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2.2 Higher Ramification Group

Previous section provides us with initial concepts to study prime’s behaviour. But
ramified/unramified is a rough classification, we often need more delicate analysis.
That’s when higher ramification group comes into play.
We now focus on number fields. Suppose the following setup:

p OK K

(p) Z Q

lies over

prime

prime

finite degree

Definition 2.6 (Decomposition group and decomposition field).

• Decomposition group 𝐷(𝔭/𝑝): the stabilizer of 𝔭 under action of 𝐺𝑎𝑙(𝐾/Q). i.e.,
{𝜎 ∈ 𝐺𝑎𝑙(𝐾/Q) | 𝜎(𝔭) = 𝔭}.

• Decomposition field: fixed field of 𝐷(𝔭/𝑝), denoted ℱ𝐾(𝐷(𝔭/𝑝)).

1 @[reducible, inline]
2 abbrev ValuationSubring.decompositionSubgroup (K : Type u_1) {L : Type u_2} [Field K]

[Field L] [Algebra K L] (A : ValuationSubring L) : Subgroup (L ≃a[K] L) :=↩→
3 MulAction.stabilizer (L ≃a[K] L) A

Remark 2.6. Similar to residue field, we investigate 𝔭 as a whole here. Thus 𝜎 ∈ 𝐷(𝔭/𝑝)
might permutes elements in 𝔭, but it must fix 𝔭 as a whole.
Lean defines decomposition group to be the stabilizer of the action on the type of all valuation
subrings of the field, where valuation subring of a field 𝐿 is a subring 𝐴 such that for every
𝑥 ∈ 𝐿, either 𝑥 ∈ 𝐴 or 𝑥−1 ∈ 𝐴.
These two definitions are not exactly the same. But the stabilizer of𝐴 is the same as the stabilizer
of themaximal ideal𝔪 of𝐴, i.e., {𝜎 ∈ 𝐺𝑎𝑙(𝐿/𝐾) | 𝜎(𝐴) = 𝐴} = {𝜎 ∈ 𝐺𝑎𝑙(𝐿/𝐾) | 𝜎(𝔪) = 𝔪}.
Hence we shall obtain the same thing by substituting 𝐴 with (𝒪𝐾)𝔭.
Technically, one can create a prime spectrum by IsDedekindDomain.HeightOneSpectrum
with desired prime and use IsDedekindDomain.HeightOneSpectrum.valuation to get a
valuation attached to the ideal. Finally Valuation.valuationSubring can transform it into
a valuation subring, thenwe can plug it into ValuationSubring.decompositionSubgroup.

Since 𝜎 ∈ 𝐷(𝔭/𝑝) sends 𝔭 to itself, a natural automorphism emerges here:

𝜎′ : 𝑘(𝔭) −→ 𝑘(𝔭), 𝑥 𝑚𝑜𝑑 𝔭 ↦−→ 𝜎(𝑥) 𝑚𝑜𝑑 𝔭

𝐷(𝔭/𝑝) ≤ 𝐺𝑎𝑙(𝐾/Q), so 𝜎 fixes Q, hence 𝑘(𝑝). Consider group homomorphism:

𝐷(𝔭/𝑝) −→ 𝐺𝑎𝑙(𝑘(𝔭)/𝑘(𝑝)), 𝜎 ↦−→ 𝜎′
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Definition 2.7 (Inertia group).

• inertia group 𝐼(𝔭/𝑝) of 𝔭: the kernel of this homomorphism. i.e.,
{𝜎 ∈ 𝐷(𝔭/𝑝) | ∀𝑥 ∈ 𝒪𝐾 , 𝜎(𝑥) ≡ 𝑥 𝑚𝑜𝑑 𝔭}

1 def ValuationSubring.inertiaSubgroup (K : Type u_1) {L : Type u_2} [Field K] [Field L]
[Algebra K L] (A : ValuationSubring L) : Subgroup
↑(ValuationSubring.decompositionSubgroup K A) :=

↩→
↩→

2 (MulSemiringAction.toRingAut ( ↑(ValuationSubring.decompositionSubgroup K A))
(LocalRing.ResidueField ↑A)).ker↩→

Remark 2.7. More on inertia group

The inertia group at a primemeasures howmuch the elements of the Galois group ”move”
the prime ideal within its own orbit. It consists of those elements of the Galois group that
act trivially on the residue field 𝑘(𝔭) = 𝒪𝐾/𝔭. In fact we can view inertia group as
decomposition group with restriction that residue field must be fixed.

Definition 2.8 (𝑛𝑡ℎ ramification group).

• the 𝑛𝑡ℎ ramification group 𝐼𝑛(𝔭/𝑝) of 𝔭:
{𝜎 ∈ 𝐷(𝔭/𝑝) | ∀𝑥 ∈ 𝒪𝐾 , 𝜎(𝑥) ≡ 𝑥 𝑚𝑜𝑑 𝔭𝑛+1}

Remark 2.8. More on higher ramification group

The first observation is that 𝐼0(𝔭/𝑝) is exactly the inertia group. In fact, the inertia group
𝐼(𝔭/𝑝) gives you the ”first layer” of information about ramification of 𝑝. 𝐼𝑖(𝔭/𝑝) are sub-
groups of the inertia group, and each higher 𝑖 focuses on finer details of the ramification.

– 𝐼1(𝔭/𝑝) consists of elements of the inertia group that act more ”mildly” on 𝔭. Specif-
ically, 𝐼1 measures those elements that do nothing up to the first power of 𝔭, leaving
the ideal unchanged modulo 𝔭2.

– For higher 𝑛, 𝐼𝑛 measures those elements of the Galois group that leave elements of
the ideal unchanged up to the 𝑛 + 1 power, meaning they only ”kick in” at deeper,
more refined levels of the ideal’s structure.

Of course we can also define 𝑛𝑡ℎ ramification group as kernels of group homomor-
phisms as we did in intertia group. Hence:

𝐷(𝔭/𝑝) ▷ 𝐼(𝔭/𝑝) = 𝐼0(𝔭/𝑝) ▷ · · · ▷ 𝐼𝑛(𝔭/𝑝) ▷ . . .

The significance of higher ramification group comes as:

Theorem 2.5. 𝔭/𝑝 is tamely ramified iff all higher ramification groups (𝑛 > 1) are trivial.
(see proof)

Theorem 2.6. If 𝐷/𝐼1 (we omitte 𝔭/𝑝 here) is abelian, then 𝐼0/𝐼1 is contained in (𝑘(𝑝))×.
(see proof)



3
THE KRONECKER-WEBER THEOREM

3.1 General Idea

Recall that,

Theorem 1.1 (Kronecker-Weber).

Every abelian extension of Q is contained in a cyclotomic field.

We will first presents the general idea towards the goal and leave technical details to
remaining sections. The main structure of our proof here is built in favor of formaliza-
tion and automated theorem proving, which emphasis computability and clarity.

3.1.1 General Idea: Reducing to Wild Ramification

We first reduce the case into abelian extension 𝐾/Q that only has wild ramification.
This is done by ”turning every tame ramification one by one into unramified element”.

Theorem 3.1. Suppose that 𝐾/Q is an abelian extension, 𝑝 is tamely ramified over 𝐾. Then we
can construct another abelian extension 𝐾′/Q, together with a subfield 𝐿 of some cyclotomic
field, such that

1. 𝑝 is unramified in 𝐾′

2. unramified prime in 𝐾 stays unramified in 𝐾′

3. 𝐿𝐾 = 𝐿𝐾′

INPUT

has tame ramification? OUTPUT

take a tamely ramified prime

a field in which it is unramified

No

Yes

Theorem 3.1

This theorem induces an algorithm as shown
on the right. We claim that after finite steps
of iteration, the algorithm will halt and we
will get a field with only wildly ramified
primes. As drawn below, the fate of tamely
ramified prime and unramified prime under
the algorithm is destined - tamely ramified
primemust be turned to unramified, whereas
unramified must stay still. The only variant
here is wildly ramified primes.

8



3.1. General Idea 9

𝑡𝑎𝑚𝑒𝑙𝑦 𝑢𝑛𝑟𝑎𝑚𝑖 𝑓 𝑖𝑒𝑑

𝑤𝑖𝑙𝑑𝑙𝑦

According to Theorem 2.4, there are only finitelymany ramified primes. Viewing tame
and wild ramification in the graph as a whole (imagine drawing a box around them).
We shall notice that there are no arrows pointing to the box, only arrows pointing out
(nothing get converted into ramified prime).
This means that whatever happends, the number of primes in the box is strictly de-
creasing - this decrease must halt within finite step since the number is finite. Thus the
algorithm is halting. And since the process can go on as long as there exists a tamely
ramified prime, it must leaves a field with only wild ramification when it halts.
Suppose the process ends with field 𝒦, we claim that if 𝒦 is contained in a cyclo-
tomic field, then so is 𝐾. In fact, if we denote the field obtained at step 𝑛 as 𝐾𝑛 and
𝐿𝑛 , we can assert that,

𝐾𝑛 is contained in a cyclotomic field ⇒ so is 𝐾𝑛−1

This is because if 𝐾𝑛 is contained in Q(𝜁𝑚), 𝐿𝑛 is contained in Q(𝜁𝑤), then 𝐿𝑛𝐾𝑛 is
contained in Q(𝜁𝑚𝑤). Since 𝐿𝑛𝐾𝑛 = 𝐿𝑛𝐾𝑛−1, we have 𝐾𝑛−1 ≤ 𝐿𝑛𝐾𝑛−1 ≤ Q(𝜁𝑚𝑤).

Q(𝜁𝑚𝑤)

Q(𝜁𝑚) Q(𝜁𝑤)

𝐿𝑛𝐾𝑛 𝐿𝑛𝐾𝑛−1

𝐾𝑛 𝐾𝑛−1 𝐿𝑛

Then we can use reverse induction to prove the lemma. Then we shall presents the
following algorithm for proving ”contained in a cyclotomic field”,

INPUT An abelian extension 𝐾/Q.
STEP 1 Run 𝐾 through the algorithm induced by Theorem 3.1.
STEP 2 STEP 1 halts with an abelian extension 𝒦/Q which has only wild ramification.
STEP 3 Prove that 𝒦 is contained in a cyclotomic field.
OUT Thus 𝐾 is contained in a cyclotomic field.

Which finishes our first reduction.
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3.1.2 General Idea: Reducing to Prime Power Cyclic Extension

Next we reduce the case into abelian extension 𝐾/Q such that [𝐾 : Q] = 𝑝𝑛 for some 𝑝
and 𝑛.

E G = Gal(E/F )

H = G(K)

K = F(H)

F 1

Recall that by abelian, we mean [𝐾 : Q] is finite
and 𝐺𝑎𝑙(𝐾/Q) is abelian. Also recall the famous
Galois fundamental theorem that establishes con-
nection between Galois group and corresponding
subfields.
𝐸/𝐹 is a finite Galois extension, 𝐹 ≤ 𝐾 ≤ 𝐸

and 𝐻 ≤ 𝐺. 𝐾 is the fixed field of 𝐻, denoted
𝐾 = ℱ (𝐻). 𝐻 is the fixing group of 𝐾, denoted

𝐻 = 𝒢(𝐾). ℱ and 𝒢 are inclusion-reversing bijections, meaning 𝐻 descends as 𝐾
moves up. And the segment with same color shares same index. 𝐸/𝐾 is always Ga-
lois, whereas 𝐾/𝐹 is Galois iff 𝐻 ◁ 𝐺.

1 def IsGalois.intermediateFieldEquivSubgroup {F : Type u_1} [Field F] {E : Type u_2}
[Field E] [Algebra F E] [FiniteDimensional F E] [IsGalois F E] :↩→

2 IntermediateField F E ≃𝑜 (Subgroup (E ≃𝑎[F] E))𝑜𝑑

Thus | 𝐺𝑎𝑙(𝐾/Q) |= [𝐾 : Q] is finite. Therefore we can use the structure theorem of
finite abelian group to break 𝐺𝑎𝑙(𝐾/Q) into product of prime power groups.

1 theorem AddCommGroup.equiv_directSum_zmod_of_finite (G : Type u) [AddCommGroup G]
[Finite G] :↩→

2 ∃ (𝜄 : Type) (x : Fintype 𝜄) (p : 𝜄 → N) (_ : ∀ (i : 𝜄), Nat.Prime (p i))
3 (e : 𝜄 → N),
4 Nonempty (G ≃+ DirectSum 𝜄 fun (i : 𝜄) => ZMod (p i ^ e i))

Then we may reconstruct 𝐾 as the composition of corresponding fixed field of those
prime power group. To do that, we need another property stated in fundamental Ga-
lois theorem,

Theorem 3.2. Given finite Galois extension 𝐾/𝐹, if 𝐻1 , 𝐻2 ≤ 𝐺𝑎𝑙(𝐾/𝐹), then

ℱ (𝐻1 ⊓ 𝐻2) = ℱ (𝐻1) ⊔ ℱ (𝐻2), ℱ (𝐻1 ⊔ 𝐻2) = ℱ (𝐻1) ⊓ ℱ (𝐻2)

In particular, the following algorithm to disassemble 𝐾 into composition of prime
power degree abelian extension of Q can be established,
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INPUT An abelian extension 𝐾.
STEP 1 Decompose 𝐺𝑎𝑙(𝐾/Q) into Z𝑝𝑟11

× · · · × Z𝑝𝑟𝑛𝑛 .
STEP 2 For every Z𝑝𝑟𝑖𝑖

(denoted as 𝑍𝑖), denote
∏

𝑗≠𝑖 𝑍 𝑗 as 𝐴𝑖 ,

1. Since 𝐺𝑎𝑙(𝐾/Q) is abelian, 𝐴𝑖 ◁ 𝐺𝑎𝑙(𝐾/Q). (Strictly speaking, 𝐴𝑖 is a sub-
group of 𝐺𝑎𝑙(𝐾/Q) up to isomorphic)

2. According to Galois theory, ℱ (𝐴𝑖)/Q is Galois.

STEP 3 By Theorem 3.2, ℱ (⊓𝐴𝑖) = ⊔ℱ (𝐴𝑖). ⊓𝐴𝑖 = 1, hence ℱ (⊓𝐴𝑖) = 𝐾 = ⊔ℱ (𝐴𝑖).
STEP 4 Each ofℱ (𝐴𝑖) is of prime power degree since [ℱ (𝐴𝑖) : Q] = |𝐺𝑎𝑙(𝐾/Q)/𝐴𝑖 | = 𝑝𝑟𝑖𝑖 .
STEP 5 Each of ℱ (𝐴𝑖) is abelian since its Galois group is exactly 𝐴𝑖 =

∏
𝑗≠𝑖 Z𝑝𝑟𝑖𝑖

.
OUT The decomposition ⊔ℱ (𝐴𝑖).

3.1.3 General Idea: Finishing Proof

Now suppose we’ve got,

Theorem 3.3. Given an abelian extension 𝐾/Q with [𝐾 : Q] = 𝑝𝑛 for some 𝑝 and 𝑛, if every
prime other than 𝑝 is unramified, then

• if 𝑝 ≠ 2, then 𝐾 is contained in Q(𝜁𝑝𝑛+1)
• if 𝑝 = 2, then 𝐾 is contained in Q(𝜁2𝑚+2) for some 𝑚

Then we can combine two algorithms given above and build the final algorithm to-
wards the Kronecker-Weber theorem,

INPUT An abelian extension 𝐾.
STEP 1 Run 𝐾 through the algorithm induced by Theorem 3.1, this halts with an abelian

extension 𝒦 which has only wildly ramified primes.
STEP 2 Run𝒦 through the decomposition algorithm, this gives𝒦 = ⊔𝐾𝑖 , where 𝐾𝑖 are

prime power degree abelian extensions.
STEP 3 For every 𝐾𝑖 ,

(a) Since 𝒦 has no tamely ramified prime, 𝐾𝑖 must also have no tame ramifi-
cation.

(b) Suppose [𝐾𝑖 : Q] = 𝑝𝑛 , then for any prime 𝑞 ≠ 𝑝, 𝑞 must be either tamely
ramified or unramified.

(c) Thus by (a), the only wildly ramified prime in 𝐾𝑖 is 𝑝.
(d) Thus by Theorem 3.3, 𝐾𝑖 is contained in cyclotomic field.

STEP 4 Since the composite of cyclotomic fields is cyclotomic, 𝒦 is contained in a cy-
clotomic field.

OUT 𝐾 is contained in a cyclotomic field.
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3.2 Reducing to Wildly Ramified Case

In this section we prove Theorem 3.1,

Theorem 3.1. Suppose that 𝐾/Q is an abelian extension, 𝑝 is tamely ramified over 𝐾. Then we
can construct another abelian extension 𝐾′/Q, together with a subfield 𝐿 of some cyclotomic
field, such that

1. 𝑝 is unramified in 𝐾′

2. unramified prime in 𝐾 stays unramified in 𝐾′

3. 𝐿𝐾 = 𝐿𝐾′

Proof. (SKETCH)

1. Constructing 𝐾′

𝐼1 is trivial by Theorem 2.5. Then by Theorem 2.6, 𝐼0/𝐼1 = 𝐼0 ≤ (𝑘(𝑝))× = (Z𝑝)×.
Thus 𝑒 | 𝑝 − 1. Notice that (Z𝑝)× ≃ 𝐺𝑎𝑙(Q(𝜁𝑝)/Q), then by Galois theory, 𝐿 =

ℱ (𝐼0) ≤ Q(𝜁𝑝) has degree 𝑒 over Q.
It can be proved that 𝑝 is totally ramified in Q(𝜁𝑝). 𝑒 | 𝑝 − 1 then 𝑒 is relatively
prime to 𝑝, and so 𝑝 is tamely ramified in Q(𝜁𝑝). Hence 𝑝 is totally and tamely
ramified in 𝐿. Thus there is a unique prime 𝔭 in 𝐿 that lies over 𝑝. Then take 𝔓 a
prime of 𝐿𝐾/𝐿 lying over 𝔭. So𝔓 lies over 𝑝. Let 𝐼′0 = 𝐼0(𝔓/𝑝) and 𝐾′ = ℱ (𝐼′0) the
fixed field.

LK P

Q(ζp)

K L p K ′ = F(I0(P/p))

Q p

prime

lies over
lies over

prime

e lies over

prime

2. 𝑝 is unramified in 𝐾′ whereas unramified prime stays unramified
𝐿 is ramified only at 𝑝, then 𝑞 remains unramified in 𝐿 as long as 𝑞 is unramified
in 𝐾 and 𝑞 ≠ 𝑝. Consequently, 𝑞 is unramified in the extension 𝐿𝐾. Therefore,
if 𝑞 is unramified in 𝐾, it will also be unramified in 𝐾′ ≤ 𝐿𝐾′. Additionally, 𝑝
remains unramified in 𝐾′ since 𝐾′ is the inertial field of 𝔓/𝑝.

3. 𝐿𝐾 = 𝐿𝐾′

• [𝐿𝐾′ : 𝐾′] ≥ 𝑒:
𝑝 is unramified in 𝐾′ and 𝑝 is totally ramified in 𝐿 with ramification 𝑒 =

[𝐿 : Q] so 𝑝 ramified in 𝐿𝐾′ with ramification index 𝑒, by Theorem 2.1,
𝑒 | [𝐿𝐾′ : 𝐾′], thus [𝐿𝐾′ : 𝐾′] ≥ 𝑒.

• 𝑒 ≥ [𝐿𝐾 : 𝐾′] ≥ [𝐿𝐾′ : 𝐾′]:
[𝐿𝐾 : 𝐾′] = | 𝐼′0| according to the setup. 𝔓 is tamely ramified since 𝑝 is tamely
ramified in both 𝐿 and 𝐾. By Theorem 2.6, 𝐼′0 ≤ (𝑘(𝑝))× = (Z𝑝)×, so 𝐼′0 is a
cyclic group. Similarly, 𝐺𝑎𝑙(𝐿𝐾/Q) injects into 𝐺𝑎𝑙(𝐾/Q)×𝐺𝑎𝑙(𝐿/Q) and so
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𝐼′0 does as well.
Let 𝔭′ = 𝔓 ∩ 𝐾. Then by definition, 𝐼′0 restricted to 𝐾 gives an element in
the inertia group 𝐼0(𝔭′/𝑝) but 𝔭′ is conjugate to 𝔭 so the order of 𝐼0(𝔭′|𝑝) is
| 𝐼0| = 𝑒.
Thus 𝐼′0 lives in the subgroup 𝐼0(𝔭′|𝑝) ×Gal(𝐿/Q), both of which are groups
of order 𝑒 so 𝐼′0 has exponent 𝑒. Since it is cyclic and of exponent 𝑒, | 𝐼′0| ≤ 𝑒.

Thus 𝑒 ≥ | 𝐼′0| = [𝐿𝐾 : 𝐾′] ≥ [𝐿𝐾′ : 𝐾′] ≥ 𝑒. Hence [𝐿𝐾 : 𝐾′] = [𝐿𝐾′ : 𝐾′],
𝐿𝐾 = 𝐿𝐾′.

□

3.3 Reducing to Prime Power Cyclic Extension

In this section we prove Theorem 3.3,

Theorem 3.3. Given an abelian extension 𝐾/Q with [𝐾 : Q] = 𝑝𝑛 for some 𝑝 and 𝑛, if every
prime other than 𝑝 is unramified, then

• if 𝑝 ≠ 2, then 𝐾 is contained in Q(𝜁𝑝𝑛+1)
• if 𝑝 = 2, then 𝐾 is contained in Q(𝜁2𝑚+2) for some 𝑚

Proof. (SKETCH)

1. 𝑝 ≠ 2 (𝑝 is odd):
The Galois group 𝐺𝑎𝑙(Q(𝜁𝑝𝑛+1)/Q) is cyclic of order 𝑝𝑛(𝑝−1). Let 𝐿 be the unique
subextension of degree 𝑝𝑛 . Then, 𝐺𝑎𝑙(𝐿/Q) is cyclic of order 𝑝𝑛 .
Consider the compositum 𝐿𝐾. Let 𝜎 be a generator of 𝐺𝑎𝑙(𝐿/Q), and let 𝜏 be a
lift of 𝜎 to 𝐺𝑎𝑙(𝐿𝐾/Q). Let 𝐹 be the fixed field of ⟨𝜏⟩. Since 𝜎 generates 𝐺𝑎𝑙(𝐿/Q),
the fixed field of 𝜎 is Q, implying 𝐿 ∩ 𝐹 = Q. Hence, 𝐺𝑎𝑙(𝐿𝐾/Q) embeds into
𝐺𝑎𝑙(𝐿/Q) × 𝐺𝑎𝑙(𝐾/Q), and 𝜏 has order exactly 𝑝𝑛 .
Thus, [𝐿𝐾 : 𝐹] = 𝑝𝑛 , and since 𝐿 ∩ 𝐹 = Q, it follows that 𝐿𝐾 = 𝐿. Therefore,
𝐾 ⊂ 𝐿 ⊂ Q(𝜁𝑝𝑛+1), proving the first part.

2. 𝑝 = 2:
For 𝑝 = 2, we reduce to the case where 𝐾/Q is a cyclic 2𝑛-extension with dis-
criminant a power of 2. Consider 𝐾(𝑖), where 𝑖 =

√−1. Then 𝐾(𝑖) is unramified
away from 2. Let 𝐾′ be the fixed field of complex conjugation in 𝐾(𝑖). Then 𝐾′

is totally real of degree 2𝑚 with discriminant a power of 2 and is cyclic. Take
𝐿 = Q(𝜁2𝑚+2)∩R, the real subfield ofQ(𝜁2𝑚+2). Since 𝐾′ and 𝐿 are both totally real
and cyclic of the same degree, 𝐾′ = 𝐿. Finally, since 𝐾 ⊂ 𝐾(𝑖) = 𝐾′(𝑖) ⊂ Q(𝜁2𝑚+2 , 𝑖)
and the latter is cyclotomic, the proof is complete.

□



4
DISCUSSIONS

In modern literature, the Kronecker-Weber theorem is usually deduced as a simple
consequence of class field theory. In fact, one can first investigate the theorem in local
scenario where 𝐾𝔭 and Q𝑝 is concerned. Then global-local principle can be utilized to
extend it into global situation as we presented here. Obviously class field theory offers
a more elegant path towards our goal.

However, by the time this paper is written, mathlib still lacks of support of local fields
and relevant concepts, making it much more difficult to start from this angle.

Through out the paper, I’ve listed all relevant lemmas that is already available inmath-
lib, and explained the difference between them and their natural language version as
commonly known. One can observe easily that many things are still missing, and ev-
erything in mathlib is written in the most general form possible - more often than not,
it takes complicated process to downgrade them to the versionwe normally encounter.
This incompleteness and complexity repels many from getting into formalization with
Lean. Fortunately the community is working hard to smoothen the learning curve
and make formalization more accessible, an example would be the recent work in Bei-
jing International Center for Mathematical Research, where a project trying to connect
mathlib with the Stacks project is on going.

Experienced readers might find section 3.1 tautology, and some might consider view-
ing proofs as algorithmweird, but this level of clarity is essential during formalization,
and the algorithm viewpoint greatly enhanced computablity of the theorem.

There are indeed still much to do to completely formalize Kronecker-Weber theorem.
For instance, higher ramification group is still on TO-DO list in mathlib. Also, proving
the halting condition of our algorithm would be challenging, let alone all the details
in last two proofs. But hopefully this paper can serve as a start heading to the target.
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